PROFICIENCY CHALLENGE 13 ANSWER KEY

$2 \quad$ The length of segment $\overline{A^{\prime} B^{\prime}}$ is 10 units. The length of the transformed segment does not change from the original because all the transformations taken preserve length.
$3 \quad y=(1 / 2) x+4 \quad y=(1 / 3) x-3$

PROFICIENCY CHALLENGE 14 ANSWER KEY

AMV = "Answers May Vary"

1	a	Answers may vary slightly. The triangle is reflected across the x-axis and then dilated by a scale factor of $1 / 2$ with the center of the dilation at F.
b	No. Explanations may vary. As an example: Dilations do not preserve congruence.	
c	Yes. Explanations may vary. As an example: Reflections and dilations preserve similarity.	

2 AMV

3 The shorter side is 1 . The longer side is 5.
$4 \quad$ The triangle is a 12-16-20. Explanations and sketches may vary.

PROFICIENCY CHALLENGE 15 ANSWER KEY

1 The larger pizza is the best choice. Explanations may vary.
$2 \quad h=24$ inches
3 a The sequences of transformations must only involve translations, rotations, and reflections. Dilations do not preserve congruence. Sketches may vary.
b All of the transformations preserve similarity. Answers and sketches may vary.
$4 \quad$ Students are guided through a proof of the Pythagorean theorem.

PROFICIENCY CHALLENGE 16 ANSWER KEY

1 Juan's method is not correct. Explanations may vary.

$\mathbf{2}$	Numbers that are only perfect squares	Numbers that are only perfect cubes	Numbers that are both perfect squares and perfect cubes	Numbers that are neither perfect cubes nor perfect squares.
	4	$-64,-8,8,27,125$	1,64	50,300

3	500 times

$\mathbf{4} \mathrm{a}$	$1 / 4$
b	$25 / 99$
c	1

5	$\sqrt{2}$ is an irrational and a real number. $\sqrt{\frac{1}{4}}$ is equivalent to $1 / 2$ and is a rational and real number. 13 is an integer, rational, prime, and real number. 14 is an integer, rational, composite, and real number.

$6 \quad$ Check student number lines for accuracy.

